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INTRODUCTION 

Devoted ta the memory of 

my friend and teacher 

Lyuben Mashev 

Contrary ta common sense, scientist is usually thrilled with the 

ward 'anomal y'. This paradox could easlly be explained - anomaly meana 

something abnormal, unexpected, i.e. unpredicted, novel. Wh en R. Wood 

in 1902 observed sorne unexpected property of diffraction gratings 

diffraction efficiency changes more than 10 times in the spectral 

region not ltu·ger than the distance between sodium !ines, he called 

thaf"' phenomenon 'anomalous', This term proves ta be sa fascina ting 

th~t even when sorne anomalies find their explanation (becorne 'normal' 

from a theoretical point of view) phenomena they represent continue to 

be called anomalous, 

Explained or not, each more or lesa rapid change in diffraction 

efficicncy of gratings is called anomaly. Great interest in almost 

century lasting investigation of anomalies could find its explanation 

in the following ressons: 

1. Their ·appearance is connected with sorne physical phenomena that 

attract attention by themselves. 

2. Hany of the anomafies are connected with surface wave excitation 

and could provide information for their properties. 

3. For the most of grating applications it is more important to have 

smooth, rather than very high diffraction efficiency - anomalies must 

be avoided, 

4. It appears that in some casee very high efficiency values could be 

anomalous-, too, Detailed investigations of anomalies could reSult in 

sorne interesting applications, 

5, Theory of anomalies provides incomparable stimuli 

of recent numerical methode for analysis of light 

nlief gratings. 

for development 

diffraction by 

The necessity ,f the thesis is due mainlr to the lack of 

detailed investigation of 1!.ll anomalies. In the last years new 

anomalies have been discovered that make it possible to develop a new 

uriited classification of anomalies and to determine the connections 

that exist between them, The Aimft of the investigation when working on 
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the the sis were: 

1. Developing program packages based on the recently published or 

original rigorous methods for analysis of light diffraction by relief 

gratings, verification of the computer codes and determination of 

their efficiency and regions of applic8tion. 

2, Theoretical and experimental investigation of some anomalies in 

different' types of gratings {metnllic 1 dielectric and multilayered) 

and of the possibility of utilizing anomalous properties; 

3. Determination_of physical connections between different anomalies 

and ressons for their appearance. This was done on two levSls: 

a) phenomenological i t ena bled to draw connections between 

an?malies: 

b) microscopical- what are the properties of electromagnetic'field in 

the nenr zone of diffrnction and how its pecu1iB:rities infiuènce the 

far-field diffraction efficiency, 

The thesis consista of 10 chapters divided in -threè~,,parts; 'The 

first IUU:.t. contains three chapters, It deals~with the ~.~ten&'rè:l/"features 
of light diffraction by relief gratings (statement -Or>,the.:·:problem, 

sorne main theorems), histories! review of investigatioris:.:!Jn anomalies 

and the ir recent classification. Chapter three contains. a review of 

the theoretical methods, including a detailed presentation of the used 

in our laboratory rigorous numerica.l method. 

Part iHQ presents anomalies in bare metallic gratlngs 

resonance ( chspter 5) and non-resonance ( chnpter 4 and 6) à nd some 

exsmples o~ their interaction (chspter 7}. It is shawn how sorne 

general properties of metallic gratings could be explained from a 

microscopical point of view. 

analyzes anomalies . in corrugated diel·ectric 

wsveguides - whst is the influence of waveguide mode excitation on the 

diffraction efficiency without (chapter 8) and with (chapter 10) mode 

interactions. -Anomaly in the coefficients of mode coupling (planar 

Brewster' s effect} is studied in chapter 10. Non-resonance anomalies 

in bsre dielectric gratings 6re discusses in chapter 9. 
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PART ONE, UGHT DIFTRACTION BY I?ElJEF GI?ATINGS 

CHAPTER ONE: BASIC PROPERTIES OF DIFFRACTION ORATINGS 

Statement of the problem of light diffraction by relief 

diffraction grating shawn schematically in fig,l.l is presented in §1, 

Main properties of gratings are discussed including grating equation, 

reciprocity theorem, invariance theorem. §2 containa a brief review of 

cornmon properties and peculiarities the spectral dependenèies of 

metallic gratings having different profiles and groove depths, 

• b 

Fig.l.l. Schematical representation of relief diffraction gratins. 

Historical review on grating anomalies is presented in §3, 

Recent classification of different types of anomalies is given in §4: 

I· Resonance anomalies which are accompanied by sharp electromagnetic 

field enhancement in the near vicinity of grating surface. They are 

due to guided wave excitation along the corrugated surfaces. 

Il_, Non-resonance anomalies that can be divided in two types: 

1. Anomalies in Littrow mount - sngular and spectral dependence of 

efficiency is smoother than in the region of resonance anomalies. 

Littrow mount {sometimes called Bragg-type) anomalies are not 

connected with surface wave excitation but with sorne peculiarities in 

energy flow distribution - formation of curls inside deep grooves. 

Usually t.hese anomalies do not lead to any noticeable drop in the 

total reflected light. 

2. Non-resonance anomalies that are in connection with the existence 

of guided waves but in the intervnl of parameters where such waves are 
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forbidden {chapter 5 and 6). 

Of course with a suitable choice of conditions it is possible to 

have a simultaneous appearance of two or more anomalies, their 

interaction and even 'annihilation'. 

It is important to note that one and the same phenomenon could 

result in different anomalies in different diffraction orders, That is· 

why anomalies in the Oth and -lst orders are considered separately in 

the corresponding chapters. 

CBAPTER TWO: SURFACE WAVES AND RESONANCE ANOMALIES 

This chapter explains the mechsnism by which surface wave 

·excitation leads to anomalies in the diffraction efficiency, For this 

sim a brief review la presented of surface waves that propagate along 

plane metal-dielectric boundary and in p1Ul ti laye red pl anar waveguides, 

§ 2 co'ntains the so cal led phenomenological approach that representa 

surface wave excitation. in corrUgated system by a set of zeros a-z and 

pol es aP of the scattering matrix S ( 19 1 20], Its components could be 

represented in the resonance anomaly region by the phenomenological 

formula: 

where a 0 is 

and there 

the 

a 
0 

a 
0 

sinus of angle 

(2. 1) 

of incidence. Without corrugation a~saP 

are no anomalies. Existence of grating leads to the 

splitting of pole and zeros. Tracing of their trajectOries in the 

complex a
0 

plane as a fonction of groove depth and/or wavelength is a 

strong tool for investigation of anomaly connectiQns and oriSin. 

When incident wave vector is not perpendicular to the grooves 

(conical diffraction mounting), representation (2.1) becomes more 

complicated, Using reciprocity theorem it is shown how arbitrary 

polarized incident wave can be decomposed into two mU:tually orthogonal 

components (in general, elliptically polarized), One Of them (with 

amplitude p1 ) is not interacting with the surface !'J:llVe. Thus in the 

phenomenological formulae · (2.1) a new slowly varying term is added, 

prOpori.iorlal to p
1 

·, 

'i 3 discusses the two main features of mode interaction: 1) i ts 

influence on th.e resonance anomalies and how it can be reflected in 

the phenomenological formulae; 2) ~nergy transfer between interacting. 

œodes 1 variation of their amplitudes in the corrugated region a~d mode 
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coupling equations. A generalization of the phenomenological approach 

is proposed thllt makes it possible any numerical treatment for light 

diffraction of plane waves on grating to be utilized for determining 

the coupling coefficients· when two modes internet in the corrugated 

region of a planar waveguide, as follows: 

Solution of eigenproblem means that the determinant of the 

rnatrix inverse to the scattering one has a zero - det(S- 1 )=O. This 

means that the rank of S- 1 is smaller than its arder, i.e. a linear 

connection exista between its columns and, in particular, between j-th 

diffracted arder amplitude (b,_,) and the resonance amplJtude h
11

. 

Varying grating period i t is possible to have a second resonance and 

in the linear connect!on bv:::cV/lbp a pole K~ appears: 

b==~b 
v K - KP Il 

v 
Let us suppose that the gratins reg ion is 

where L»d. The Jl- th mode ampli tude can 

series: 
ro 

bp(X) = J_l BJlf K) eiKx dK 

are where Bp,v(K) 

grating vector K. 

the Fourier components 

Using (2.2) the response 

is: 

'ig.2,1. Ratio b
1

/b
0

, calculated 

y the rigorous metod {solid line) 

nd using eq,(2.2) (represented 

ith crosses with c
01

=0.0201 Pm- 1
, 

'=41.7107 pm- 1
) as a function of 

for a wavegu ide 

=2.3, n
3

=1.6, t=o:3 

.\=0.6 pm and 

with n
1 

=1, 

prn, h=0.004 

angle of 

incidence v=30°. 

" 
• 
u 

•uo1 

·• 
·• 
·• 

( 2. 2) 

extended from x==O ta x=L, 

Fourier be represented in 

(2, 3) 

corresponding ta a fixed 

to the set of amplitudes 

'"" on • UJIJ 
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After differentia. tian of {2.-4) in x the folloWing equation, is deduced: 

~ b (x) = i~ lB (K) _K __ 
x Il rr v K - KP 

- " 
(2.5) 

where we have nssumed that 

precise ~nalysis, In fig.Z.l 

cpv~const, This statement needs more 

a comparison between the numericnlly 

calculated ratio bv/b
11 

and thnt obtained from (2.2) is presented and a 

very good agreement is achieved for a large region of K1 except for 

the near vicinity of pole interaction point where Im(aP) becomes large 

enough that the equation detS-l is no longer fulfilled for real values 

of <1
0

• 

lntroducing nnother 

h11 =h11 exp{-iK~x) in (2.5), 

eqttations is obtained: 

db
11

(x) 

--ax- = i c bv(x) 

"" 
db J>(x} 

--ax- c 

"" 
\J(x) 

of slowly varying amplitudes 

th• well-known system of coupled mode 

e 
iBIJVX 

( 2. 6) 
- iS pvx 

e 

\.'he re ô"" =KP -KP is the deviation from the Bragg condition, 

" v 

CHAPTER THREE: THEORETICAL HETHODS FOR ANALYSIS OF LlG!lT DIFFRACTION 

BY RELIEF ORATINGS 

A brief review of different theoretice.l methods approxime. te 

a.nd rigorous 1 for analysis of plane ~ave diffrac.tion by relief grating 

is presented in ~1. It includes diffe~ent approximate roethods based on 

the Rayleigh hypothesis, rigorous integral and differentiai methods, 

§2 contains a detailed presentation of an original differentia! 

method - a· generalization of the rigorous differentia! form~l-ism of 

Chandezon et al, (C-method) in two directions: for conical mounting 

and for gratings with a corrugation only on the upper boundary 

(fig.l,1a). The choice of the method has been determined by its wide 

field of application (metal, dielectric and multicoa.ted very deep 

gralings), On the other hand this method does not need so complicated 

mathemstics and is not so time consuming. The transformation of the 

coordinate system: 

x 
y 

= z 
f(x) 1 3.1) 

transforma the Maxwell' s equations in each of the layera of fig.lb 
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into a system of 4 p.artial differentiai equations with non-constant 

coefficients: 

:i-)} 
:i-]} 

iwp a [ ("" 811 ]] 
+ k;ln~ iJulc { u) td - ru 

(3.2a} 

(3.2b) 

(3.2c) 

(3.2d) 

where J-1
0 

is the vacuum permeablli ty, k is the wave number, n - the 

refra.ctive index and C(x):::{l+f·(x) 2 r 1 D(x)=f·(x)C(x}. Unlike the 

classical diffraction case (IJ
0

=:0) the system (3.2.) nnd the unknown 

field components cannat be split up into two independent sets, 

corresponding ta the two fundamental polarizations.Taking into account 

the periodici ty of the grating, the solution of ( 3. 2} ca.n be sought in 

the form: 

F [ ~ l [ 

E, 

li>p H 
0 " 

,-w11 H 
0 • 

E 
" 
l 

ik(u u+/3 w} 
• • 0 

{ 3. 3) 

p=l' ••• 4 (3 .4) 

nd a =a +À/d, for a numerical trentment a limited number m~[-N,NJ of 
• 0 

rders ha.s to be taken into account. If G stands for the trunca.ted 

~ctar F (3.2) can be written in a matrix form: 

. dGJ 
- 1 ('{V' :::: RJ GJ { 3. 5) 

ere the components of RJ are obtained subatituting (2) inta (1). The 

lution of (3.5) can be represented by: 

( 3. 6) 

~re 

,l>J (v)= 5 exp(ir~v) (3.7) 
mp n>p ~· 

is a square {8Nt4)x(8N+4} matrix with columns - the eigenvectors of 
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RJ. rJ are the corresponding eigenvalues and BJ conta.ins the unknown 

~mplitudes determined by the boundary and outgoing wave conditions, In 

the Ouvw coordinate system the boundaries between the layera are 

dafined by v=1J and a connection.between the unknown amplitudes at the 

two aides of the J-th boundary is quite simple: 

TJ olJJ ( 1 ) BJ = TJ + 1 'l'J + 1 { 1 ) BJ + 1 • ( 3. B} 
c j c J 

Using (3.8) a connection between the amplitudes in the upper and lower 

Jlledia can be fou nd, Taking into account the outgoing wave candi ti ons 

the system (3,2) is reduced to a more simple linear algebraic system. 

The description of 'the system shawn schematically in fig .l.la 

needs a complication of field representation in the second region. For 

'y<min{f(x)] the field cAn be expanded in plane waves: 

av ;J(r)BJ 
J 

ik/J
0

z 
e (3. 9) 

where 0 =ô exp( ia x) and 
"'l' m-p m 

;J (y)=ô exp(itJy), x 2 =n3 -a1 . The 

uniqueness of the solution in 
. mp mp .. m .. 

1 
m 

the second region connecta F l y=
12 

and 

B2
• The boundary conditions at the flat boundaries y= 1

1
, , •• 1..,_ 

1 
make 

it possible to express the diffracted waves amplitudes via the 

incident ones, 

It has been pointed out that the most important criterion of the 

quality of a numerical method is its efficiency - ability to deal with 

a wide class of gratings in a relatively short computation time 1 

rather than its simplicity. It is well known that the computation time 

in the matrix operations is proportional to the cube of the matrix 

size, so the most important factor becomes the convergence rate with 

respect to the truncation pnrameter N. We have made a set of 

calculations in arder to perform the limita of method applications for 

Fig,3.1. Convegence rate for ~·=0° 
(solid line) and ~- =60° (dnshed 
line). Grating period is equal to 
the depth - 0,6 pm. For ''l''= 30° 
the resulta coinside with the case 
~·=0°, In the in-plane case k=O.S 

"m, 

" 
" 

" 
" 

('v ______ _ 

---- .H 
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different types of gro.tings. It happens the.t the saturation value is 

obta.ined at one and the same N independant of the angle 'P.' between the 

incident wuve vector and the plane perpendicular to the grooves 

corresponding to the deviation from the classical diffraction case. As 

an example in fig,3.1 the -lst diffraction order efficiency of a bare 

sinusoida.l Al grating is shown for three different values of <P': 00 
' 

30° and 60° far a TH polarized incident light; the convergence is one 

and the same for the three cases. That is why in the next examples 

only the cl!'tssics.l diffraction case is investigated and the 

conclusions are valid for the Chandezon's formulation, too. A 

comparison ha.s been made with the well- known Rayle-igh-Fourier (RF) 

non-rigoraus method and far metal, dielectric and coated grntings the 

foli'owing general conclusions can be drawn: 

~·,The results of Wlrgin [67, 6S) conccrning the validity of the RF 

nethod for sinusoidnl gratings with depth far exceeding the 

.heoretica.l limit are confirmed. On the other hnnd the rigorous nwthod 

bath in the conical a.nd classical cases) hns a fe.ster convergence 

hich diminishes much alower than that of the RF method - for gratings 

r moderate and high depth values (h/d>0.2) the computer time gain 

1mpensates the sophistication of the code. In fig.3.2 the convergence 

tes of the two methods ar~ compared for an Al gruting - for Srnall N 

e results of the RF method are highly oscillating while the rigorous 

thod converges much fastcr. 

The change of the grating profile worsens drastically the 

vergence of the RF method, not affecting significantly the 

iciency of the rigoroos methcd (fig.3.3). 

Even for shallow grntings, above sorne critical thicl·mes.s of the 

·,ing t , different for the two methods, the results diverge. This ... 
"iculty wa.s reported by Chs.ndezon et al, [95}, but without anY 

anatian. Horeover, increa.sing N the critical thickriesses decrense, 

results being worse for the RF method. For example, when h/d=0.43 

·igorous method is applica.ble to four times greater V8.lues of the 

e layer thickness. We ha.ve found that this divergence is due to 

fini te computer.• word length: For the propagllting diffraction 

s the modulus of the exponential propagation factors is eqUlll to 

The evanescent •rHwes are che.rncterized by complex propagation 

s and if their real exponents are large enough, in the rnatrix 

lications the small members are trunca.ted. for the 32 bits 



Fig.3.2~Convergence 

rate for RF (dased 
line) and for riga
rous method (solid 
line) - sinusoidal 
Al grating 

(a} h/d"'D.333 
(bi h/d=0.6 • 

Fig.3.3, Like fig.3.2a 1 

exept for a symmetrical 
triangulnr profile. 
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computer word length 23 bits are reserved for the mantisse. and if 

m:xJim(xmll = ll~ 

m:xl!mfr"')/kj "'H~ 1 
-N s m ~ N ( 3. 101 

the maximum a.vailable thickness t can be given as .... 
2nt H /).<ln(223 

), The values of t for the RF (0.27pm) and for the 
,.a,.: If "'"'x 

rigorous method {0.56pm} obte.ined from this inequnlity are close to 

the numerically ca.lculnted 0.23tJm alld 0,47prn, respectively, wher 
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h/d=0.34 1 for example. 

§3 contains a short classification of different theoretical 

methods for analysis of mode coupling in corrugated waveguides. 

Approximate annlytical methods, usually valid in first arder 

approximation with respect to the modulation depth are considered in 

the beginning, First attempts consist of substituting the perturbation 

of boundaries with a perturbation of Maxwell's equations. Their 

solution is searched as a sum of modes of the unperturbed waveguide 

(ideal mode approach) or of the planar waveguide with thickness 

corresponding to the local thickness (local mOde approach), The 

periodlclty of the corrugation leads to the coupled mode equations. 

Unfortunately, these approaches are valid only for collinear coupling 

because of not taking into account the exact boundary conditions. At 

the other ha nd, the existence of such annlytical method that could 

give the mode coupling coefficients in closed form is important in 

Integrated optics, In great amount of integrated optical deviees the 

corrugation depth is much smaller than the period and the waveguide 

thickness in order not to modify significantly mode field distribution 

and propagation constant. ln that case it is. quite useful to obtain 

sorne formulas, although bei.ng approximi:lte, but enabling the 

calcula ti on of the coup ling coefficients wi thout heavy computer codes 

and big computera. 

As a first step mode coupllng by a single step structure on a 

waveguide with an arbitrary refractive index profile is considered. On 

bath si des of the step the field is represented as a superposition ·of 

all possible modes (guided and radiated) of a waveguide with a 

suitable thickness, propagating in all possible directions. The mode 

amplitudes are evaluated using the boundary conditions on the step 

boundnry, In a first order approximation in step height analytical 

expressions are obtained and, in particular, the dependeJ,ce of the 

TEP-reflected mode amplitude on the amplitude of the TEn-incident 

takes the form: 

one 

( 3. Il) 

where sf-IT/ is a coefficient depending on the waveguide parameters, 

A groove with an arbitrary profile is divided into rectangular 

slides with infinitesimal width. Applying consecutively the boundary 
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conditions on each of the slide boundaries, the changes of the mode 

amplitudes are in a first order approximation in groove height 

proportions! to: 

( 3. 12) 

where 

A
11

'11 =·r'IJ cosll
11

- rJ.I cos~Jl {3.13) 

On each of the grooves of the a:rating the amplitude change is small 

but in the case of phase synchronism the diffracted by the whole 

grating 

Using 

wave amplitude can 

the periodicity• of 

become comparable 

the corrugation 

represented as: 

1 iA d 1] h &. Jl'IJ ~ 
. [e JJ?,,.. -;;------o 

Jl'IJ,IIII 

where 

d 

1 • 1 J f(x) -imKx 
dx li<! e . 

0 

wi th the incident one. 

in x, (3.12) cnn be 

( 3.14) 

( 3. 15) 

rn = O, :tl, t2 1 .. , 

Considering ttie Bragg diffraction case, the only significant term in 

the sum {3.14) is the one with a slight deviation from lhe phase 

synchroniem condition (AJJ'IJ,m~O), and equation (3.14} becornes 

equivalent to iM
111

,r,.exp{iAJ11J,.,x}. Substituting AaJl/d with fJaJl/ax 

(possible due to the small amplitude change on a· single groove}, the 

well-known system of coupled mode equations is obtained: 

The coup ling 

[TE TE 
p 0 

da' iA x p = 1 r" •' e JliJ,m 
<IX PO 0 

da~ -ill x . i r' J •' e Jl'IJ,a 
<IX OP p 

( 3.16) 

coefficients r are 

n~ (0)-n: (O) 
t: ~. (0) 2wp

0 
,.,. 

( 3. 17) 
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rTH TH 
JI " 1 3. 181 

where q~=r~HP- k
2
n:(O), and t(O) and X(O) are the values of TE and TH 

mode eigenfunctions, calculated on the waveguide surface. 

The case with a polarization conversion is more complicated due 

to the non-orthogonality of the longitudinal and transverse mode 

eigenfunctions and a numerical treatment is required. 9 sets of 

parameters of a step refractive index waveguide were considered: n
1 

=1, 

n
2

=? .. ·62 1 n
3

=1.515, t~3, 5 1 10, 15 and 20 11m and n
1

=1, n
2

=2.234, 

n
3

=2.216 1 t=6 1 10, 20 and 60 J.lm 1 including mono and multi mode cases 

.,( up to 8 modes). Wi thin a 5% relative error the coupling co~fficients 

cnn be approximated with the following expression: 

rTE TH=hT q 02(0)[--'----'-]e* (O);Jt' (O)sin[V'JI-~ijl (3,19) 
11 n lm n 2 0 1(0) n2(0) /iL 'lL cos'n 

' ' Formulas (3,17) and (3,18) are valid for an arbitrary refractive index 

and groove profiles. (3.19) is valid for an arbitrary grating profile, 

too. For the case of normal incidence they coincide with the results 

of the local mode approach and of the "growing-wave" analysis of 

Stegeman et al. [114]. For oblique incidence, hmo~ever, our results 

differ slightly from those of Stegeman et al. by the eosine in the 

denomi~ator, responsible for the interaction length l=d/coSf' for one 

groove. 

In many cases the modulation depth is not very small compared to 

the period (e,g. grating in- and output couplers) 1 but not big enough 

to,modify significantly waveguide mode structure. When h/ds0.15 it is 

possible to use the phenomenological approach. These methods could be 

divided into two groups with respect to the field representation: 

Based of Rayleigh hypothesis (plane wave expansion) 

[111-113]. This is a ·very simple method, but it has two dis~dvantages 

- validity only for,step-index waveguides and bad convergence rate for 

non-sinusoidal grating profiles, 

2. Hodal methods solution of rigorous boundary problem is 

searched numerically as a sum over modes of unperturbed waveguide (in 

general it can be graded index), 



- 14 -

Other two groups of methods could be specified according. to the way 

the coupling coefficients are calculated: 

1. Numerical determination of mode propagation constant in the 

coupling region. After that coupling coefficients are calculated using 

the relation r=2klm(aP) [47, 113], 

2. Application of the phenomenological approach presented in §3 

of Chapter two, 

Comparison was made between the resulta obtained using the last 

method and using. analytical formulas ( 3.17) (3.19). A very good 

coïncidence is observed for three- and multilayered waveguides in the 

case of shnllow corrugation when formulas (3,17) - (3,19) are valid. 

Al though in the numerical treatment rigorous .electromagnetic 

theories can be used, they presume an approximation which is fulfilled 

if groove depth is small compared to the waveguide thickness 

influence of the corrugation on mode propagation constants away from 

phase mntching conditions is negligible. When the grating is deep 

enough, mode propagating constants are chnnged significantly even 

without mode interaction. Horeover, coupling becomes strong even when 

phase matching is not ensured. In that case different modes of the 

corrugated waveguide do not correspond at all to the modes of planar 

system. The only possibillty is to search for a rigor6us solution for 

energy trans fer in different directions in wavegulding layer, 

substrate and claddlng [105, 114, 115], 



- 15 -

PART TWO, ANOMAUES IN SARE l·1ETALUC GRATINGS 

This part of the thesis contains a detailed study of different 

anomalies in diffraction characteristics of bare metallic gratings. 

Thin dielectric layer on the metallic substrate does not lead to ne\-.' 

anomalies but to a slight shift of their position, depth and half 

widlh. Thicker layers could support leaky waveguide modes, excitation 

of Hhich could lead to appearance of new anomalies, like resonance 

anomalies in corrugated dielectric waveguides (Part three). These 

anomalies in metallic gratings covered with a dielectric layer ure 

studied in details and we should not discuss them. 

The follo\oo·ing .I::&!!!..ark has to be mentioned here: Further on 

appearance of curis in energy flow dlstribution is discussed in 

details, Usually existence of curis in vector field (of a vector A) 

means thal rotA...:O. This is not the case with Poynting vector P of 

electromagnetic field in lossless media free of charges nnd currents: 

rotP,Q. Ry 'curis' for the sake of brevity h'C are naming regions of 

closed vector !ines, 

CfiAPTER FOUR: LITTROW MOUNT ANOMALIES - PERIODICITY OF 

PROPERTIES AS A FUNCTION OF GROOVE DEPTH 

It is well-kno1m that the re is a quasi periodici ty of 

diffraction efficiency of grating supporling t1w diffraction .orders. 

Existence of very hi~l efficiency in Littrow mount is accompanied by a 

zero of the zeroth reflected arder, Effort of Hesse! and Oliner [2BJ 

to explain this 'anomaly' (called perfect blazing in Littrow mount or 

Bragg• type anomal y) br surface wave excitation failed and la ter they 

proposed another interpretation - zeroth arder zeros in Littrow mount 

are connected with improper poles of the scaltering matrix. These 

pales are obtained when incident and reflected waves are exchanged, 

i.e. IJOn-physical radiation conditions are implied. It is shown in the 

tbesis Uml this correspondence between zeros of the reflected arder 

nnd improper pole does not contain any explanation and happens always 

Hlwn incident and refJ~cted ~aves arc exchanged: 

Nat.hemalically this exchange is expressed as a change of the 

sign of incident ~-rave vector compone nt <o' perpendiculnr to the 

grating plane. If zero th arder amplitude is zero ( b 1 =0) for o =a
2 

0 0 0 
,,. i t. h 

non-7.ero incident wave (a~:: 1) the.n forma! exchauge of incidelll and 
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reflected wave (carried out with the change of sign of x
0

) means that 

the re is a reflected wave without an incident one, i.e. nn 

eigensolution exists represented by a pole of the improper scattering 

matrix. This fact is of great importance for the results presented in 

the next two chapters, where it is shawn that a close connection 

èxists between resonance and non-resonance non-Littrow mount 

anomalies. 

Tseng et al. {30] have shawn that small variation of h around 

the value hL responsible for perfect blazing maves the zero a~ in the 

complex a
0 

-plane along a trajectory perpendicular to the real axis, We 

were able to follow this trajectory in a very large groove depth 

'interval and we found opt that it is a straight line, tending towards 

minus imaginary infinity as grating tends towards flat surface 

(fig,4.1): 

This 

a: __. 
fact has 

well-known hypotheses: 

i ro 

dii'ect 

( 4 . 1) 

consequences that explain two 

1) Up to now it was assumed that perfect blazing in Littrow mount is a 

phenomenon, different from other anomalies. And indeed, resonance 

anomalies are localized for flat surfaces ne ar the real a
0 

-axis 

their position corresponds with surface wave propagation constants, 

0.25 

(j 
~-10.75 
E 

-21.25 

0.57 0.61 
Re( ex) 

' ' ' ' ' ' ' ' ' ' ' ' ' 

0.65 

Fig.4.1. Trajectory of a~ in the 
complex a-plane when groove depth is 
varied: d=0.5 fim, :\=0.6328 11m, n1 
polarization. Solid line 
infinitely conducting substrate, 
dashed 1 ine aluminum grating 
(n=1.37B+i7.616), tlotted line- real 

axis. 
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while the 'starting' point of Littrow mount perfect blazing lies in 

- iCll. 

2) Littrow mount anomalies appear only in deep gratings, when a: 
approaches the real axis and has sorne influence on diffraction 

effü:iencies. 

Increasing the groove depth, a: approaches the real axis with 

rate determined by the following connections: 

l 
Re(az) =a 

0 L 

2" Im(az) f ~ -1 
À. 0 - 1 

( 4. 2) 

where f_
1 

is the -lst Fourier component of grating profile fonction. 

These equations are fulfilled only till the zero is lying away from 

the ·real axis. When Im(a~) becomes small enough its decresing rate 

depends on the polarization. For a fixed value of h it crosses the 

real axis perfect blazing in the -lst arder appears. After that 

Im(a~) increases in a positive direction, zeroth arder efficiency is 

growing and -lst arder efficiency decreases. 

Physical explanation of these peculiarities could be found on a 

microscopical leve!. Above a flat perfectly conducting surface energy 

flow is parallel to the surface. Its intensity is zero a\:. equidistant 

planes. Their position above the surface is determined by the 

equations: 

{ 2m+l) n 
2k-t

0 

rn 

for TH polarization, and 

• b 

Fig.4.2. Energy flow distribution: 
(a) h/d=0.02, (b) h/d=0.08. 

(4.3a) 
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n 
~ 

0 

rn 0' 1. 2' 14. 3b) 

for TE polerization. 

For small corrugation, the li nes {that re present the 

cross-S€ction of energy flow surfaces with plane perpendicular to the 

grating) in the near vicinity of the surface are parallel to it 

(fig.4.2a), Vertical component of Poynting vector PY becomes different 

from zero except for the positions above the tops and bottoms of the 

grooves. In the thesis it is shawn that each plane, defined by 

eq.(4.3) is split into two, the splitting increases with h. Between 

each couple of planes Px has a negative sign (fig.4,2b). As a result 

curls are formed around the points where IP!=O. Increasing groove 

depth, aren occupied by the curls increases. They black energy flow in 

positive x dii'ection increasing -lst order efficiency. It is important 

a 

Fig.4.3. Like in fig.4.2, except 

for (n) h/d=0.24, (b) h/d=0.38 

and (cl h/d=0.52. 

b 

c 
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ta note that independent of groove depth value the centers of the 

lowest curls are situated at almost the same distance from grating 

surface. When the centers of the lowest bottom curls lie on the line 

cannecting the groove tops, the entire upper medium is occupied by 

curJs the re is now energy trans fer towards reflected wave, i, e, 

perfect blazing in Littrow mount occurs. Taking into account eq.4.3 1 

groove depth values responsible for perfect blazing are determined by: 

h :. TE, TH 
Yo ( 4.4) 

This equation is an approximation, but a rather good one numerical 

results almost coincide with it, Horeover, it provides an explanation 

1~hy perfect blazing in TE polarization is achieved at almost twice 

deeper gratings (compare eq,4,3a and 4.3b). 

a 

Fig.4.4. Like in fig.4.2, except 

for (a) and (b) h/d=0.72 (in non

Littrow mount), (c) h/d=1.44 . 

.. 

·~··· ··.\@)···· 
b 

c 
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Further increase of groove depth causes bottom curls to go 

deeper and deeper. The distance between the centers of bottom and top 

curls decreases and they are unfolded energy flow in positive 

direction increases. Energy flow distribution becomes more and more 

alike the distribution above shallow gratings, but only ÔUtside the 

grooves. When ~2y0 the centers of the top and bottom curis lie on one 

and the same line (fig.4,4a) and curls above the groove tops 

disappear. In that case the grating acta like a plane mirror. Inside 

esch groove there is a totally hidden curl that separates energY flow 

above the grating from the groove bottoms, These curls are very stable 

- changing angle of incidence in a large interval causes no change in 

.f.he flow distribution. This property called 'antiblnzing' (118] is 

important for sorne effects discussed in the next two chapters. 

Increasing. groove depth leads to a repeating of fig.4,2· to 

fig.4.4 process, except for the lowest curls Soing deeper and deeper, 

"Perfect blazing followed by ·antiblazing etc. could be detected 

(fig.4,4c) agnin. 

It is shawn in the thesis that when the grating supports a 

single order 1 in the near zone curls are formed periodically in the 

same manner like in figs. 4.2 4.4. They lead to a periodical 

behsvior of the ~ of reflected wave, It must be pointed out that 

perfect conductivity is not a. limitation neither of the ·method nor of 

the resulta i t is assumed in order to mnke the pic ture of flow 

distribution more clea.r as there are no lines fini~hing at the 

surf" ace, For finitely conducting gratings the behavior of flow 

distribution is almost the same, Horeover, in chapter 9 it is 

demonstrated that suc~ formation of curla is typiCal for sorne peculiar 

cases of light diffraCtion by dielêctric gratings, too, 

CHAPTER FIVE: RESONANCE ANOMALIES IN HETALLIC GRATINGS 

Quasi-periodicity of properties of metallic grati~gs in Littrow 

mount 1 discussed in details in the previous chapter is a general 

property· of gratings - it 8.ppears for other incident. angles and even 

·in grazing incidence (f,ig.5,1), Horeover 1 · diffraction lasses of 

surface plaamon that propagates along the corrugated metal-air 

interface are quasi-periodical fonction of groove depth. These !osses 

were determined" solving the homoSeneous problem and the ratio between 

en~rgy flow carried by the radiation" arder and by the surface wave, It 
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Fig.S.l. Diffraction characteristics 
as a fonction of groove depth: solid 
line Littrow mount efficiency, 
dashed line - efficiency for a=0.99 
and dotted line - diffraction !osses 

of surface plasmon. 

is shawn in the thesis that the quasi-periodicity of the lasses is due 

to formation of curls inside the deep grooves. As a direct 

consequence, there is a quasi-periodicity of imaginary part of plasmon 

propagation constant and loops are formed in its trajectory in the 

complex a
0 

-plane as a function of groove depth (fig. 5. 2), In the 

regions where JReaPj<l eigenvalue is transferred into a zero of the 

zeroth arder amplitude a~ 

surface wave. 

large lasses lead to delocalization of 

Some points of the trajectory of fig,5.2 lead to anomalies that 

are discussed in the next chapter. They appear in the regions IImaPI<1 

where there is no surface wave and are of non-resonance type. 

It is well-known that grating multiplies the pales [19, 20]. In 

particular, similar loop~ are formed near the point 1-;\/d due to 

plasmon excitation through the +1st diffraction arder. In that case 

the existence of pole is accompanied by a zero, When this zero lies 

near the real a
0 

-axis the reflection of the grating is very small -

total absorptio!l of light can occur under certain conditions. This 

phenomenon was discovered by Maystre and Petit in 1976 [38] for 

0.09 

g-0.02 
!': 

-0.13 

0.75 

h/d ------7 O._H 

1 
O.JS2B 

cx' 
" 

!.OB 

0.90 
Re( <X} 

1.05 

Fig.5.2. Trajectory of aP (heavy 

line) and of az (thin line) when 

groove depth is increased. The eut 

in the complex plane that 

corresponds to the change of ~ign 

of t
0 

(121] is presented with dash 

li ne. 
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Fig.5.3, Energy flow distribution in the three case.s of 
total absorption of light -by aluminum gratinS: (a) h/d=O ,1, 

9=14.82°, (b) h/d=0.79 1 6=14,93°. (c) h/d=1.2, 9=15.06° [132}. 

Bd 

4d 

0 
0 4d Bd 0 4d Bd 0 4d 

2d 

d~·1~1 9 d 

r d 0 d/2 d 

d/2 ~-; '\ '/ "". 
0 

0 d/2 d 

0 

0 d/2 

a b c 

Bd 

d 

shallow gralings, In the thesis it is shawn that total absorption 

occurs in deep gratings as well. For aluminum grating it happens three 

times when the groove dePth is increased {h/d=O.l, 0.69 and 1,2). In 

deep gratings there are one or two curls in each groove that separate 

energy flow above the tops from groove bottoms, Just above the tops 
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energy flow distribution is one and the same in the three cases 

(fig,5,3), Flow lines are turning to the negative direction of x-axis, 

corresponding to surface wave excitation through the -lst diffraction 

arder. The l ines are compressed resul ting in enhancement of local 

a b 

Fig.5.4. 2-D distribution of electro~agnetic field 
energy, corresponding to fig.5,3a and b. 

electromagne_tic field energy, Such enhancement was well-known for 

total absorption of light in shallow grating and was utilized in 

nonl inear second harmonie ex ci tati on ( 123 127] and luminiscence 

(128] and SERS [129 - 131). We have shawn that total absorption of 

light is accompanied by field enhancement in deep gratings, too, Due 

to the pecul iar behavior of energy flow (compression of 1 ines above 

the tops is separated from the bot toms), field enhancement now is 

localized only on the tops of the grooves (fig.5.4), 

Diffraction efficiency anomalies in the -1st arder of aluminum 

graling in conical diffraction are discussed in the last section of 

chapter five, As this anomal y is well investigated, our in te rest is 

attracted by the occurrence of anomaly in TE fondamental polarization 

when goiug away from the in-plane case (fig, 5, 5), In classical case 

('{l' =0) the incident wave vector is perpendicular to the grooves. TE 

polarized wave has an electric field vector perpendicular to the 

p]asmon elect.ric vector and there is no anomaly due to plasmon 

excitation (fig.5.5a). As angular deviation from in-plane case is 

growing 1 anornaly appears in TE polarized light as well. The dip in the 
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' g 
' 
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Fig.5,5. Experimental angular dependence of diffraction efficiency 
(heavy line) and ellipticity (thin line) for different ~ngular 
deviation 'P' from classical diffraction case. Solid line - TE 

polarization, dashed line - TH polarization. 

angular dependence ( varying the other angle of incidence) for TH 

polarization decreases and for TE polarization deepens (fig.5.5b), 

Interesting phenornenon is a sharp increase of ellipticity of 

diffracted wave in the anomalous region, although incident wave is 

linearly polarized, 

CHAPTER SIX: NON-RESONANCE ANOMALIES IN HETALLIC GRATINGS IN 

NON-LITTROW MOUNTING 

The main difference between resonance and non-resonance 

anomalies appears in electromagnetic energy distl-ibution - resonance 

anomalies are characterized with large (one arder and more) field 

enhancernent in the vicinity of grating surface, while in the case of 

non-resonance anomalies such phenomenon is not observed, From a 

phenomenological point of view resonance anomalies are çonnected with 

a pole of the scattering rnatrix. This pole is usually accompanied by a 

iero of the corresponding diffraction arder amplit\ldè', but the pole is 

responsible for resonance field enhancement. Non-resonance anomalies 

are due to appearance of a zero without a pole. One such anomaly was 

considered in chapter four zeroth arder zero in Littrow mount· that 

lead to perfec·t blazing in the -lst orâer. This anomaly is not 

accompanied by a pole - the trajectory of the zero starts from -ioo for 
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flat surface. The anomalies discussed in this section are of another 

type - they are also due to a zeroth arder zero without a pole, but 

the trajectory of such a zero alternatively consists of pales 

(fig.5.2), We should now consequently discuss sorne peculiar points of 

this·trajectory. It is obvious that such anomalies appear only for TH 

polarization in the case of bare metallic gratings.· 

Often diffraction gratings are used in grazing incidence for 

improving grating dispersion. Unfortunately as angle of incidence 

tends to 90° the zeroth arder efficiency tends to unity and -lst arder 

efficiency rapidly decreases, Numerical optimization of blazed and 

sinusoïdal aluminum gratings was clone [1391 ând the results could be 

surnmarized as follows: 

1. Sinusoldal profile is preferable lfhen grating supports two 

diffraction orders. 

2. Increase of groove density leads to a higher diffraction 

efficiency, but shifts the worklng spectral region towards shorter 

wavelength and increases sensibility to groove depth values. 

3. Diffraction e_fficiency in TH polarizA.tion exceeds more than 10 

times the efficiency in TE polarization. 

4, Maximum efficiency in grazing i11cidence is obta.ined at about 20% 

modulation depth (fig, 6.1), wh ile in Littrow mount the correspondlng 

h/d value is 40% 

The 

following 

a
0 

=sin89°, 

h/d .. 0,22. 

00 

" 

i " 
f " 
' 

last two properties could easily be understood just 

the trajectory. of fig.5.2. Let us fix: the view point at 

The real part of a' 
0 

Th en a maximum in the 

.. \ 

,, '·' ... •.. '·' 

be cornes al most equal to a wh en 
0 

-1st order effic!ency could be 

Fig.6.1. Diffraction efficiencY 

vs, modulation depth h/d 

sinusoidal Al grating, angle of 

incidence 89°, 
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expected. Ils value is deterrnined mainly by Im(a~) o.nd Hhep absorption 

!osses in the metal are growing Irn{a~) becomes greater and -lst order 

efficiency decreases, As far as such o. trajectory (fig.5.2) is typical 

only for TM polarizatioJ) and for TE polarization there is no zeroth 

arder ;ero lying in the vicinity of a
0

, TH -lst arder efficiency is 

much higher. 

Further increase of h/d rnoves a; a.way from a
0 

=sin89°, zero th 

order amplitude increases (a.s it depends on the difference a
0 
-a~) and 

-lst order efficiency decreases {fig.6.1). Because the trajectory of 

the zero a" is nlmost parallel to the real a axis when h/d~o.z, 
0 0 

groove depth dependence of efficiency is rather smooth. This fa. ct 

could be of great pra.ctical interest as it is very difficult to 

produce n grating with preliminary fixed groove depth. 

Tracing the trajectory \<o'ith increase of groove depth, it crosses 

the real nxis when h/d,.0.39. The cross-point a~ 1 corresponds to the 

so-called 'perfect blazing in non-Littrow mount' discovered in 1980 

[37). \\'e were nble to find its proper exp~anntion (fig,5.2) and to 

show why perfect bla.zing in TE polnrization exists only in Littrow 

mount. It is interesting to note thal perfect blazing ·in Littrow and 

non-Littrow mount are exhibited nt almost one and the same groove 

depth values thus angular interval with high diffraction efficiency is 

enlarged. The results are quite different for two polarizations 

(fig. 6. 2): 

1. TH polarization (h::0.194pm, d=O.Srm). Three zeroth order zeros are 

found at a
0

=0.B2 (a;
1 

), 0.63 (u
1
:) and 0.44 (symmetrical to a;

1 
with 

respect to a1~). Thus zero th arder efficiency is al most zero in a large 

0.14 
~ 
u 
c 1 ~ 
u 1 

"' " 
~ 

0.07 

1' 
0 

0 

l ~ 
N 

0 

0.30 

1 
1 ' j 

0.65 1.00 

Fig.6,2. Zcroth order efficiency 

as a fonction of a =sine . Solid 
0 0 

line- TH polnri~ation, h/d=0.38B, 

dashed line TE polarization, h/d= 

1.32. l/d=l.2656. 

' 
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angular interval leading to high ()85%} effièiency in the -lst order. 

2. TE polarization (h::o0,661-Jm, d=0.5pml. There is no perfect blazing in 

non-Littrow mount and the angular interval with law zeroth order 

efficiency is much narrower. 

With 

agnin the 

h/d=0.69). 

further increase of h/d the trajectory 

real axis again at ac=0.9993 (fig.5.2 

Zeroth arder efficiency again becomes nil. 

of a; crosses 

and 6.1 with 

Efficiency in 

the -lst order depends on the groove profile. Symmetrical trîangular 

profile results in 

Unfortunately groove 

very 

depth 

high efficiency (fig.6.3b 

is very large (h/d=0.69), For 

and 6.4b). 

sinusoidal 

profile with that groove depth value -lst order amplitude is almost 

zero in Il large angular interval ('antiblazing' of gratings [141)) 

and, in po.rticular, in grazing incidence (fig.6.3a and 6.4~), 

Superposition of those two phenomena (zero of the zerot.h and -lst 

" '. 
' ' 

,' ' 

t>• o.• 01 oo •u o.~ o• O_l 11• (IS 

'" 

• 

,. 

'" "' 

Fig.6.3. Diffraction efficency in the 

Q-th 1 sol id ·li ne) and -lst (dashed 

li ne) order and total diffracted 

energy (dotted line) as a function of 

modulation depth h/d for Al gratinS 

with (a) sinusoïdal, and (b) 

syrnmetrical triangular profile. d=0.5 

pm, l=0.632Bjlm, polnrization, 

9=87.85°. 

Fig.6.4. Likc Fig,6.3, but as a function of wavelength when 
h/d=0.69. 
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arder amplitudes) lead to almost total absorption of incident light by 

a grating supporting two diffraction orders. lt appears when the 

trajectory of a~ in fig.5.2 lies to the left of the eut and there is 

no pole. 'l'hat is why there is no field enhancement - this anomaly is 

of non-resonance type. Contrary to the cases of total absorption 

discussed in Chapter 5 now there is no surface wave excitation and 

energy flow lines are not compression of flow lines near the grating 

surface. 

CHAPTER SEVEN: ANOMALIES INTERACTION IN HETALLIC GRATINGS 

This chapter deals with the influence of simultaneous 

,appearance of two anoma.lies on the diffraction characteristics. It is 

"''ell known that interaction of eigensolutions lead to splitting and 

repelling of trajectories of the cor;esponding eigenvalues due to 

orthogonality requirements. Such a behnvior is characteristic not only 

for the pales of the sco.ttering matrix, but of zeroth reflected arder 

r.eros as well, as shawn in §1. The reason is that these zeros are in a 

peculiar manner eigenvalues 1 but of the non-physical problem (Chapter 

four). Such an interaction between the trajectories of the zeros is 

guite important, as far as in many of the anomalies the influence of 

fhe zeros is greater than tho.t of the pales. 

Simulta.neous excitation of two opposite~y propag·a.ting S\trface 

plasmons along shallow gratings and its influence on anomalies in 

reflectivity is discussed in §2. Energy transfer bet~een· the two 

,urface waves leads to a sharp increase of imaginary parts of their 

propagation constants. The pole maves away from the real axis and 

surface wa.ve excitation becomes more difficult and anoma1y dip in the 

reflectivity becomes less noticeable 

corresponding to the interaction region 

w-mini gap is formed. 

in thespectral interval 

the so-called forbidden 

It wa.s shawn in 1987 [145, 146) that under certa.in conditions 

k-mini gap conld be formed - interval of angles of incidence where 

anomaly is ·not so ma.nifested. Tran et al. [147] fcJund a connection 

that determined the forma. lion of a defini te type of gap depending on 

the ratio between radiation and o.bsorpt.ion lasses and direct coupling 

strength between the two surface wnves, Our aim was to find the 

physica.l background of this link. For that sake a tra.cing of 

t.rajectories of ·zeros and pol es as a function of wavelength for 
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de};lendence of reflectivity. 

b 

fferent groove depth values and profiles is presented ne.a.r normal 

~idence. Coupling between incident and surface waves ~s direct 

)rough the :!:lst f·~urier components of grating profile f±
1 

), Coupling 

ween oppositely propagating surface plasmons is of two types: 

ect (carried out through the second Fourier components of the 

file f±l' if any) and indirect (through 2f±i J. We are dealing with 
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nluminum grating with period d=0.63 11m and profile function: 

h, 2n h, . ['" ( !!s)] f{x)=zsin(a x) + 2 Hn d x + q q=O, 1 ( 7. 1) 

If q=O ..... then f(x) is anti symmetrical, and if q=l symmetrical. At 

first h
2 

is nil and coupling between incident and surface \;aves is 

much stronger than between the surface waves, provided the grating is 

shallow, Thus the repelling of trajectories of the poles lfig.7.ln) is 

determined predomina.ntly by radiation and diffraction !osses, but not 

b 

Fig.7.2. Like fig.?.l, except fo profile given by eq. 
{7,1) with h

2
=0,02 jJm. 
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by a plasmon coupling even near normal incidence, Similar behavior 

have the zeros except for the groove depth value h
1 

=0.06 pm. Then 

their trajectories are lying near the real axis and in the vicinity of 

a
0

=0 their separation becomes so small that even weak indirect 

coupling leads to the repelling: angular interval around a
0 

=0 exists 

without real zeros, the value of minimum in the reflectivity increases 

and k-mini gap is formed (fig.7,lb), 

It has to be pointed out that existence of forbidden gap for the 

anomnly in the reflectivity in this case does not correspond to a 

forbidden gap in the surface plasmon propagating ·constant aP - pole 

trajectories do not exhibi t any noticeable pecul iari ti es, Th us i t 

could be risky to determine the values of real and imaginary part of 

aP from experimental results for position, half width and minimum 

va]\le of the reflectivity dip. 

When direct coupling between surface "'aves is greater (h1 i!!"O) 

repelling of the pole trajectories appears (fig,7.2a), practically 

independent on the strength of indirect coupling, In agreement with 

general theoretical principles, strong interaction between zeros could 

be found 1 too. In the vicinity of a
0

=0 trajectories of the zeros 

approach the trajectories of the poles and mutual annihilation leads 

lo a formation of spectral interval without anomalies w-mini gap 

region appears (fig.7.2b). A peculiar mechanism of transition between 

two types of gaps with the increase of h
2 

is discussed in the thesis. 

Anomal y interactions in deep metal! ic gratings is analyzed in 

§ 3. For shnllow grooves repelling of trajectories could be noticed 

only in the ne ar vicini ty of the ir "intersection" points. For deep 

gratings interaction region is much larger. It is shown in the thesis 

how different types of coupling between poles and zeros determines 

short- and long-wavelength limits of different anomalies: 

1, Brewster's effect (resonant total absorption of light} in deep 

gratings exists when J../dE:(1.19, 1.40); Decreasing the wavelength, the 

loops in the trajectory of the zero shrink in the vicinity of a
0

=0, 

Thus the groove depth interval with high absorption values increases 

(vertical part of•'the dependence in fig. 7. 3 and 7. 4). 

2. Perfect blazing in non-Littrow mount exists for J../d~[l.04, 1.48). 

3, Grazing incidence zero th arder zero could be found in large 

spectral interval À/dE(l.04, 2), but it leads to almost total 

absorption of light only when it is accompanied by a -lst order zero 
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Fig, 7, 3. Spectral dependence of groove .- depth values (a) and angul/;\ 
deviation from -lst order eut-off (h), corresponding to total ligl 

absorption in shallow and deep aluminum grating, 

(for aluminum sinusoidal grating it hnppens when À/d=1.2656~ 
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PART THRŒ ANOMAUES IN DIEUECTRIC GRATINGS 

CHAPTER EIGHT: RESONANCE ANOMALIES IN CORRUGATED OPTICAL 

PLANAR WAVEGUIDES 

· In multilayered dielectric gratings resonance anomalies are due 

to guided wave excitation. Two are the main differences with bare 

metallic gratings: 

1. Corrugated waveguides can support bath TH and TE modes thus 

resonance anomalies appear in bath polarizations. 

2, Huch smaller value of !osses in optlcal dielectric waveguides 

compared to metallic substrate enables the existence of pole aP to 

mnnifest itself rather more noticeably - anomalies consist of peaks 

and~~dips, contrar:{ to resonance anomalies in metallic gratings where 

~h~se peaks could not be detected or are rather weak. 

Fig.8.1. Reflectivity in conical 

mounting of corrugated wavefuide, 

n
1

=n
3

=1, 

h=0.04pm, 

n
2

=2.3, t=O.lJlm, d=0.3pm, 

l=0.6J1m, unpolarized 

light. 

.. 

'" 

The peak is mu~h more pronounces when it is accompanied by a low 

valued background. Host peculiar is the behavior of reflectivity 

(fig.8.1), Two cases are discussed in the thesis in details - grating 

supporting only the zeroth orders in the cladding and in the 

substrate, and having more diffraction orders. Phenomenological 

approach makes it possible to draw sorne general rules connecting 

symmetry of the system wi th the main characteristics of. anomal y, 

provided only the ~ieroth orders are propag11ting: 

(a) symmetry with respect to horizontal axis (e,g, symmetrical 

waveguide with anti-symmetrical groove profile on upper and lower 

boundary) - reflectivity minimum is always zero • 

.(.hl .R.S.:~M~.e.t.rt" l.'J..tb respect to vertical plane ( e. g, asymmetrical 
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waveguide with symmetrical corrugation) - reflectivity maximum reaches 

100%, at !east theoretically. 

(c) symmetry with respect to horizontal plane (it is difficult to 

produce such a waveguide) - reflectivity changes from 0 to lOO% in the 

anomalous,region. 

Of course, these conclusions are valid only for lossless waveguides 

and for plane incident wave. 

§2 presents experimental results of resonance anomaly in graded

index waveguide. After a grating with 0.3 /JID period was recorded 

interferometrically ill a layer of positive photoresist Shipley AZ1350 1 

il was transferred into the glass substrate using ion-bearn milling. 

Honomode waveguide was made in the corrugated substrate using ion

exchange in molten AgN0
3

• Angular and spectral dependencies of 

reflectivity in the region of waveguide ~ode excitation are shawn in 

fig.8.2, Half width of the maximum is about 3 nm - much narrower than 

the other tunable reflection optical filters. 

If the period of the grating is lan~er and higher orders are 

propagating 1 the ru les that are connec ting the properties of anomal y 

with symmetry of the system are valid only for shallow grooves, A 

demonstration of this fact is presented in §3 of chapter 8. It is 

... ,----------~ 

'" 

a 

Fig,8.2. Angular {a) 
dielectric grating, 

" 

'"' "" "" ."'"""'"''' 

b 

and spectral (b) dependance of reflectivity of 
Dashed line without waveguide, solid line 

after the ion-exchange. 

• 
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Angulur dependence of -lst arder efficency (TE polnrization, 
pm). - -.- Al grating, multilayered dielectric 

grating, ----plane dielectric muirror [154]. 

interesting to note that for shallow grooves waveguide mode excitation 

is accompanied by a peak in the efficiency of non-zero orders, but 

these peaks are only a few percent high, It is" possible, in principle, 

to increase drastically the efficiency in reflected orders by 

increasing groove depth and imposing a multilayered dielectric 

reflection con ting upon grating surf6ce. Unfortunately from a 

practical point of view, a coating with optical thickness enough to 

increase significantly .reflectivity and diffraction efficiency could 

support great number of waveguide mo.des. Contrary ta the pl anar case, 

grating enables ta excite these modes by a plane incident wave - a lot 

of resonance anomalies appear as deep minima (fig.8.3). In the thesis 

a detailed study is presented for different wavelength values and 

polarizations. For example, decreasing the wavelength the number of 

anomalies increases due to the increase of number of modes and 

decrease of grating vector. 

CHAPTER NINE: NON-RESONANCE ANOHALIES IN DIELECTRIC GRATINGS 

Another pos~ible way to increase diffraction efficiency in 

reflected non-zeroth orders is to decrease the number of propagating 

diffraction orders. The best solution is to retain only two orders, as 

it is in the case of fine pitch metallic gratings, This is possible if 

the dielectric grating is used with light incident from the substrate 
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side under the angle higher than the critical one for total internai 

reflection. Provided the period is small enough, there .is no 

propagating order in air and in the substrate only two orders exist. 

Like metallic gratings supporting two orders, highest diffraction 

efficiency is obtained in Liltrow mount, Incrensing groove depth 1 

diffraction efficiency behnvior is quasi periodical (fig.9.1) 1 similar· 

to the metallic grating (chapter 4), Here again a formation'of curls 

in energy flow distribution is found that determines the efficiency 

behavior. As bath media are dielectric, flow lines penetrate. much 

deeper in the lower medium and are larger than the curls 1n metàllic 

gra.tings, Thus groove depth value responsible for perfect biazing 

.(when the center of th~ lowest curl is lying on the line. connecting 

groove tops) is higher (fig.9.1) than for metallic gratings, This is a 

grent limitation to the prnctical usage ... of such gratings - it is very 

~ 
u 
< ru 
.~ 

• ru 

3 
0 
~ 
D 
0 

1.0 

0.5 

/ /'' 
0.0 . 

0 200 400 h(nm] 

·~ ,-------~----, 

., 
L~ 
i ... 

Fig. 9.1. Groove depth depe_ndence of 

-lst arder efficiency of dielecric 

grating with light incident fro~ the 

substrate side (n=1.5)', Solid line

TE pole.rization nonflpll?SUHA . ().=0. 550 

Jlm), dot te curve - TH polarization 

().=0.550 J,lm); dashed line -.TE pola

rization 0.=0, 650 Jlm), border li ne -

nt polarization (;\.=0.650 pm). d=0.26 

pm 1 Littrow mount. 

Fig,9.2. Spectral· dependence of 

diffraction grating with. refractive 

index of the upper~medium 1.5. Secon 

medium is air (dotted line TE 

polarization 1 dashed li ne TM 

polarization), or aluminllm (sol id 

line - TE polarization, border line

TM. polarization), d=O. 26pm, h=O. 21 

Jlm, Littrow mount. 
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difficult to manufacture grating with small period (d~0.25 Jlm) and 

high modulation depth (h/d-..1). The main advantage lies in the fact 

that here absolutg efficiency could reach 100% value - lasses are much 

lower than in metallic gratings, 

Spectral dependence of efficiency in Littrow mount is presented 

in fig,9.2 for a fixed groove depth value. It looks like efficienèY in 

TE polarization for metallic gratings and this could easily be 

understood taking into account that much broader maximum for TH 

polarization 'of metallic grating is due to the existence of 

non-Littrow perfect blazing (see chapter 6), This phenomenon is 

connected in a peculiar manner with existence of surface plasmon on 

bare plane metal-air interface. As far as auch surface waves could not 

prof:ia.gate along the interface between two dielectrics, non-Littrow 

perfect blazing is not detected in fig.9,2 for the case of dielectric 

grat.tng, 

CHAPTER TEN: ANOMALIES AND HODE INTERACTION IN CORRUGATED 

PLANAR WAVEGUIDES 

This chapter presents results on two aspects of mode coupling in 

corrugated planar waveguides: 

1. Influence of simultaneous excitation of more than one mode on the 

resonance anomalies, 

2. Brewster's effect in corrugated waveguides anomaly in the 

coupling coefficients of mode interaction in the corrugated region of 

a planar waveguide. 

For multilayered planar waveguide it is possible to have 

differently polarized modes with equivalent propagation constants, 

provided the parameters are properly chosen, In §1 this possibility is 

utilized to obtain resonance anomalies in the reflectivity for the two 

fundamental polarizations important when working in unpolarized 

.light. 

If phase conditions for mode excitation are satisfied near 

normal incidence, then two oppositely propagating modes ar~ excited 

simultaneously. Tt:ls mounting enables to use the narrow band 

reflection filter (chapter 8) dlrectly as a selectable mirror (for 

example 1 in laser resonators). Anomaly 'interaction leads to appearance 

of two peaks. At a certain set of parameters annihilation of pales and 

zeros happens, like formation of ~-minigap in metallic gratings. 
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Fortinately, for symmetrica.l corruga.tion profile only Q.ne peak is 

formed in spectral dependence of the reflectivity, 

Brewster' s effect in corruge.ted pl anar wnveguides is discussed 

in ~ 3, When TE modes are coupled in a corrugnted region of a planar 

waveguide)- at a given angle between their directions of propagation 

the coupling vanishes. This phenomenon ha.s been known for yea.rs, but 

there is nor proper understanding, neither a common opinion on this 

angle value. 

The form of the angular dependencies in {3.17)- {3.19) hns two 

direct consequences: 

(i) co- and contra-linenr int~ractions are cnrried out with a 

polarization conservation, and 

(ii) if the angle between the directions of propagation is equal to 

n/2 the coupling between TE modes vanishes. From eq. (3.17) it follows 

tllftt the effect is valid for bath the coupling of modes with the snme, 

and wilh different orders, Furthermore, even on a single, step boundary 

(eq.(3.11)) TE mode coupling vanishes as. the angular difference 

becomes 90°, As far as the existence of grating leads to n 

constructive {or destructive) interference between the· diffracted on 

each groove modes, it is obvious that in the case of the zero coupling 

on a single boundnry no interaction would appea.r throughout the whole 

corrugated region. 

ln the thesis it is shawn thnt Brewster's effect in corrugated 

.,..·nveguides could be direct! y ut il ized to suppress the undesired 

depolarization 

Schematically 

in sorne 

presented in 

integrated optica.l deviees. 

fig.lO.l beamsplitter and polarizer 

consista of three gratings, the firs used for light coupling into the 

waveguide, and the other gratings are croased under the angle. of n/2. 

}lensured depolarizntion in dit·ection perpendiculnr to the initial 

Fig,lQ.l. Schematical rept'e~>ntation 

of integrated-optical coupler, 
beam-spl i tter nnd polnrizer, based 
on relief di {fraction gratings upon 

a planar waveguide. 
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direction of propagation is lesa than 1~ only TE TH mode 

conversion is observed 1 although mode propagation constants are almost 

one and the same for the two polarization and phase conditions are 

satisfied for excitation of bath modes. 

Increasing the groove depth, expressions (3,17)-(3.19) for the 

coupling coefficients obtained in the first arder approximation are no 

longer valid and the use of the rigorous method becornes necessary. A 

rnonornode waveguide bas been considered (n
1 

=1, n
2

=2.3, n
3
=1.6, t=0,07 

jlm). In arder to avold the influence of the other types of coupling, 

its thickness bas been taken to be less than the TH mode eut-off, The 

numerical resulta are shawn in fig,l0.2 for a sinusoidal groove 

profile. As the corrugation depth ls increased the effective 

refracti ve index of the mode is changed 1 too, because h be cornes 

comparable to the waveguide thickness. Within a relative error of O. lX 

it has been shawn that even for deep gratings (h/t>0.5) the Brewster's 

law analogy exista; the value of the zero-coupling angle ~8 depends on 

the·groove depth and for relatively small h its deviation from 45° la 

proportional to h 2 (fig.l0.2), due to the invariance of the phenomenon 

to the change of the h sign, 

Fig.10.2. Groove depth dependence 

of TE mode propagation constant 

r8 /k and Brewster' a angle 6
8

. 

l.=O. 6 JI m. 

"" 

•u· 

... 

"" 
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CONCLUSION 

The present thesis is devoted to theoretical and experimental 

investigations on diffraction grating anomalies. Hain resulta of the 

thesis could be grouped in the following directions: 

I. Sorne new anomalies in diffraction efficiency of metallic and

dielectric relief gratings are predicted theoretically and confirmed 

experimentally, as follows: 

1. Resonance total absorption of light in deep metallic gratings 

supporting a single propagating arder. 

2. ·Non-resonance total absorption of lhtht by metallic gratings 

,with two propagating orders. 

3. 'Antiblazing' of metallic gratings - diffraction efficiency 

of a deep metallic grating is almost zero in the entire angula.r 

interval, provided it is zero in Littro~ mount. 

4, Total deloca.lization of Bt1rface plasmon on corrugated 

meta.f-a.ir interface when radiation (diffraction) !osses are high 

then eigensolution of the system is not existing, 

5. Resonance anomal y in the reflectivity of corrugated 

waveguides, 

6. 'Perfect blazing' for bare dielectric gratin_gs when light is 

incident from the substrate side. 

Sorne possibili-ties for utilization of these effects are discussed, 

II. Connections are revealed that exist between these r\.ew anomalies 

and already known on es 1 as well as between known but unidenti fied 

anomalies { 'perfect blazing' in Littrow and nof!-Littrow mount and 

Brewster's effect in shallow metallic gratings), Determination of such 

connections enables to identify different anomalies, i.e. t.o link them 

with (or to distinguish them definitely from) some phenomena on flat 

surfaces (waveguide modes in optical waveguides- and surface plasmon 

wave on metal-air interface). 

III. Phy_sical reasons for appearance of anomalies _Jlre found in the 

behavior of electromagnetic field characteristics in the vicinity of 

grating sUrface and their influence on the far-field parameters. It is 

shown that curls are formed in energy flow distribution . At a given 

groove depth v~lue the lowest curls are t·otally hidden inside the 

grooves and energy flow above the groove top is similar to the flow 

above flat surface - quasi-periodicity of phases and efficiencies of 

• 
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the propagating orders and of the diffraction losses of surface wave is induced. 
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